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Abstract

We tackle the problem of reducing compression artifacts.

Specifically, we focus on transmitting the residual from the

original video, i.e. difference between a compressed video

and its corresponding original/uncompressed one, together

with the compressed video during video transmission. Our

video compression pipeline is capable of diminishing the

overall cost of transmitting the residual and simultaneously

achieving comparable video quality with respect to a state-

of-the-art baseline. We provide experimental results based

on various compression methods on video datasets with

great diversity, to substantiate the capacity of our pipeline

in improving video compression.

1. Introduction

Video has become one of the most popular medium to

communicate, share knowledge, and record events recently

in our daily life. Along the development of recording tech-

nology and expectation of better visual experience, video

data becomes higher resolution which naturally leads to

larger size. However, as the communication channel or net-

work is usually with limited bandwidth, video compression

is essential to maintain the efficiency of video transmission.

Various video coding standards have been proposed for

video compression, such as HEVC [7], MPEG-4 [5], and

H.264 [10]. Generally, most of the video coding meth-

ods used by consumers belong to the lossy compression

case, in which the file size of a video is reduced by elim-

inating redundant information or some details. Ideally, the

loss caused by compression should be undetectable by end-

users, but with the demand of transmitting more data grows

(e.g., video streaming), it is inevitable to require more data

reduction that would generate obvious compression arti-

facts, e.g., block boundary, mosquito noise, and blur.

The visual difference between a compressed video and

its corresponding original/uncompressed one is known as

residual. In order to reduce the influence of compression ar-

tifacts for a better viewing quality, several general strategies

∗The symbol ∗ indicates equal contribution.

are investigated, including: 1) developing a new compres-

sion procedure to minimize the residual, 2) estimating the

residual from the compressed video and performing recon-

struction, and 3) transmitting the residual from the original

image together with the compressed video. In this paper,

we particularly focus on the third one since it directly ex-

tracts useful residual information from the original image

(i.e., server side). A representative work [8] of this strategy

utilizes an autoencoder framework to encode the residual

frame-by-frame into binary representations for transmission

from the server side to the client one. Although this method

can provide better video quality than H.264 by employing

the binary residual representations, the bandwidth it needs

to transmit the residual information is still high and thus the

bitrate can be significantly increased.

In this paper, to reduce such issue, we propose a holis-

tic framework which is able to simultaneously eliminate the

overall cost of transmitting the residual and achieve com-

parable video quality. The main advance in our proposed

method is based on a hypothesis that the variety of patch-

wise residual can be quantized into certain groups, in which

the mean representation of these groups is named as resid-

ual pattern. Given a video frame, its residual information

can thus be easily encoded by using the indexes of the resid-

ual pattern, combined from all the patches within this video

frame. With this operation, we no longer need to transmit

the original residual through the channel but only require to

remember the indexes of residual pattern, which leads to a

more efficient way for residual transmission.

Since the residual pattern can be trained and sent to

the client beforehand, during running the application (i.e.,

video streaming), we simply need to feed our video data to

the pre-trained model to generate the indexes, in which each

index corresponds to one residual pattern. Then, based on

another pre-trained reconstruction network, once the client

receives the indexes, the video frame can be reconstructed

immediately using the corresponding residual pattern. To

achieve this, we design a framework consisting of three

components: feature extraction on the residual, residual pat-

tern discovery, and residual reconstruction.

In the experiment, we use several compression methods

(i.e. H.264, HEVC, and VP9) and conduct extensive ex-
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periments on a large-scale video dataset, i.e. Kinetics [2],

with various settings for qualitative and quantitative evalua-

tion. The results in comparison to the state-of-the-art base-

line successfully verify the effectiveness of our proposed

method in improving the video quality without significant

increase in the cost of residual transmission.

2. Proposed Method

Our proposed method consists of three components, as

shown in Figure 1: 1) feature extraction on residual, 2)

residual pattern discovery, and 3) residual reconstruction.

In the following, we first sequentially introduce the details

of each component, and then present the workflow of the

overall learning procedure.

2.1. Feature Extraction on Residual

Given a compression method to compress a video se-

quence, in a frame-by-frame basis, the first component of

our model aims to find the high-level representations of the

residual information Ir between a video frame I and its

compressed version Ic, i.e., Ir = I − Ic. This is realized

by an autoencoder, which is a popular algorithm of learning

feature representations of data in an unsupervised manner.

A typical architecture of an autoencoder is composed

of a pair of encoder E and decoder D, where in our case

the encoder projects a residual information Ir into a feature

vector E(Ir), and then the decoder maps it back to recon-

struct the original residual Ĩr = D(E(Ir)). We minimize

the objective of reconstruction error over N frames, which

is defined as:

Lae =

N
∑

i

∥

∥

∥
Ĩir − Iir

∥

∥

∥

1
. (1)

As such, the autoencoder learns to retain the latent resid-

ual information of the input Ir in the feature space, while

extracting useful knowledge E(Ir) for the next step.

2.2. Residual Pattern Discovery

As shown in Figure 1, the feature map E(Ir) extracted

from the residual image Ir is of the size M×N×D, where

M = H/8, N = W/8, D are height, width, and channel

number respectively. We denote a vector Pmn of length D
obtained from each spatial location (m,n) to represent a

corresponding patch in the residual image with respect to

its receptive field. In other words, we obtain in total R =
M×N patches from the residual image and extract features

for these patch-wise residuals.

We hypothesize that the collection P of all feature vec-

tors representing patch-wise residuals from training video

frames is distributed with multiple modes, i.e., they can

be grouped and each group shows a specific pattern of

patch-wise residual. Based on this hypothesis, the second

component in our model is to perform clustering on P in

order to discover residual patterns. Assume there are K
modes/groups in P , the center {Ck | k = 1 · · ·K} of each

group can be treated as the representative one and used to

approximate other members belonging to the same group.

However, as the distribution of P is dependent upon the

feature representations E(Ir) extracted in Section 2.1, the

quality of such approximation and the clustering outcome

also varies accordingly. Therefore, during training the pro-

posed model, we try to update the autoencoder such that

E(Ir) better fits our hypothesis and reflects a more com-

pact structure in the distribution of P . This is achieved by

minimizing the objective:

Lcen =

|P|
∑

r

∥

∥Pr − Cκ(r)

∥

∥

1
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where |P| denotes the number of feature vectors in P , and

κ(r) ∈ {1, · · · ,K} is a mapping function to obtain the

group index of a feature vector Pr.

Given a video frame I , its residual information Ir can

now be efficiently represented as the group indexes P̃ =
{κ(r) | r = 1 · · ·R} of corresponding patch-wise residual

patterns {Pr | r = 1 · · ·R}. As a result, it costs only R×
log2(K) bits to transmit the residual, which is significantly

lower than transmitting the real residual in double precision.

To further reduce the cost during transmission, we apply

Huffman coding [1] on P̃ and is empirically able to reduce

around 97% of the bit-rate, where K is set to 2048 in our

experiments.

2.3. Residual Reconstruction

When a client receives from the server a compressed

video frame Ic together with its residual represented by P̃ ,

we now consider how to use P̃ for improving the quality of

Ic. Here, we assume that the client stores the database of

K representative patch-wise residual patterns beforehand.

Given {Ck | k = 1 · · ·K} learned from the stage of resid-

ual pattern discovery, P̃ is able to be converted to approx-

imated residual features via retrieving center patches from

indexes as Pc =
{

Cκ(r) | r = 1 · · ·R
}

. We then propose a

residual reconstruction network T to reconstruct the origi-

nal video frame I based on the input Pc and Ic, in which T
is composed of two sub-networks: an upsampling network

U and a refinement network F .

As shown in Figure 1, the upsampling network U first

takes Pc as input and map it to a higher-dimensional feature

map U(Pc), and then the refinement network F processes

U(Pc) and Ic to output the final result Ĩ = F (Ic, U(Pc)).
The objective of training the reconstruction network is to

minimize the difference between Ĩ and I:

Lrec =
N
∑

i

∥

∥

∥
Ĩi − Ii

∥

∥

∥

1
. (3)



Figure 1. Architecture of the proposed frame-by-frame video compression enhancement method. There are three components in our model,

we background the architecture of each component by three different colors.

To be detailed, the upsampling network U follows the

architecture of ESPCN [6]. The refinement network F is an

8-layer convolutional neural network with each layer fol-

lowed by a ReLU activation except for the last one, where

Ic and U(Pc) are fed into F through the first and fifth layer

respectively.

Data: Input frames I and the corresponding

compression Ic in training videos.

for Each Epoch do

if index of current epoch < L then

∀I : θE , θD
+
← −∆θE ,θDLae;

∀I : θE , θU , θF
+
← −∆θE ,θU ,θFL

∗
rec;

clustering on P to get {Ck | k = 1 · · ·K};

else

∀I : θU , θF
+
← −∆θU ,θFLrec;

θE
+
← −∆θELcen;

∀I : θE , θD
+
← −∆θE ,θDLae;

clustering on P to get {Ck | k = 1 · · ·K};

end

end

Algorithm 1: Training procedure of our method.

2.4. Training Procedure

To train the proposed model, we alternatively perform

optimization on each loss function from each step (i.e., Lae,

Lcen, and Lrec). We summarize the overall training pro-

cedure in Algorithm 1, where we denote the parameters of

{encoder E, decoder D, upsampling network U , and refine-

ment network F} as {θE , θD, θU , θF } respectively.

In particular, for the first L epochs during training, we

skip the stage of residual pattern discovery and focus on

learning the autoencoder and reconstruction network, in or-

der to stabilize the training at the early stage. Therefore, the

input to the upsampling network becomes the real patch-

wise residual features {Pr | r = 1 · · ·R}, while the objec-

tive function for reconstruction is thus re-written as:

L∗
rec =

N
∑

i

∥

∥F (Iic, U(P i
r))− Ii

∥

∥

1
. (4)

3. Experiments

Dataset and Protocol. We use Kinetics dataset [2] in our

experiments, which is a large-scale and high-quality dataset

collected from Youtube, composed of a diverse range of hu-

man activities. We collect two subsets from Kinetics for

training and testing respectively. The training subset con-

tains 10K frames in 1093 videos over 391 classes, while

the testing subset has 3253 frames in 345 videos over 345
classes. Note that the video classes in the testing set is

overlapped with the ones in the training set, but the video

sequences are not overlapped. In order to remove com-

pression artifacts introduced by prior codecs on YouTube,

we follow the same procedure as in [11] to downsample

high resolution videos (with width and height greater than

720px) into the ones of 352 × 288px. We adopt the PSNR

and SSIM [9] metrics for quantitative evaluation, which is

typical in most of research works on video compression.



Table 1. Results on the Kinetics dataset with various coding standards and bitrates.

Kinetics
Coding Standard H.264 HEVC VP9

BitRate (bits/sec) 1M 2M 5M 1M 2M 5M 1M 2M 5M

P
S

N
R Original 31.638 34.680 37.271 29.209 33.255 37.512 33.152 35.008 36.445

DRN+ [4, 13] 32.776 36.264 39.432 29.944 34.550 39.536 34.276 36.296 38.162

Ours 33.044 36.384 39.651 30.030 34.570 39.702 34.425 36.555 38.292

S
S

IM

Original 0.939 0.967 0.984 0.878 0.927 0.983 0.951 0.968 0.979

DRN+ [4, 13] 0.947 0.973 0.988 0.885 0.932 0.986 0.957 0.972 0.984

Ours 0.949 0.974 0.989 0.889 0.933 0.987 0.958 0.973 0.984

Figure 2. Example results on the Kinetics dataset, where DRN+ is likely to produce undesirable results. For each example, the first

(leftmost) column is the original frame, the second column is the compressed frame, the third column is the result of DRN+, and the forth

column is the result of our method.

3.1. Video Compression Performance

We conduct experiments on several coding standards

and bit-rate settings. For comparison, we introduce our

baseline model, an artifact removal network which is a

deep learning-based method based on [3, 13] with resid-

ual blocks. Residual information is willing to be learned for

removing compression artifacts by an 8-layer convolutional

neural networks, in which each conv-layer is followed by

a ReLU activation function except for the last one. Note

that there is no any stride in our baseline model in order

to keep the resolution of frames. The network is fed by the

compressed image as input in a frame-by-frame process and

outputs the enhanced image. We train this baseline model

(referrerd as DRN+) on Kinetics with various bit-rates.

Note that, in our proposed method, additional bandwidth

is required during transmitting group indexes of patch-wise

residual patterns. That is, apart from the bandwidth used by

video coding standards, an extra bandwidth is consumed by

transmission of indexes. Hence, for a fair comparison, we

also take this into consideration by adding this extra band-

width to the one from video coding during training the base-

line (i.e., allowing for more bitrate in video coding), so that

the overall bandwidth consumed would be equal for both

the baseline and our method.

Quantitative Results. In Table 1, we present compar-

isons on the Kinetics dataset under various coding stan-

dards, including H.264, HEVC, and VP9. On this dataset

with diverse set of object categories and large motions, our

results are consistently better than the DRN+ baseline. This

attributes from our design that learns patch patterns from

the input residual, which makes the following reconstruc-

tion task easier. In contrast, the baseline method focuses on

reconstruction directly from the compressed frame, which

may suffer from the overfitting issue and is not aware of the

residual pattern. Additionally, we evaluate our model on

test set (in total 7K frames) of Vimeo-90k dataset [12], the

results are shown in Table 2, where our model is able to out-

perform the baseline under three different coding standards.

Table 2. Results on the Vimeo-90k dataset. Bit-rate: 5Mbps.

Vimeo-90k Coding Standard H.264 HEVC VP9

P
S

N
R Original 38.33 39.01 39.62

DRN+ [4, 13] 40.18 40.89 41.50

Ours 40.47 41.24 41.79

Qualitative Results. We present some example results

with original frame, compressed frame, and our recon-

structed result in Figure 2. The results show that our re-

construction from the H.264, VP9 and HEVC standard is

able to recover some details.

4. Conclusion

In this paper, we present a deep learning-based method

for addressing the issue of reducing the influence of com-

pression artifacts. We perform clustering on the patch-wise

latent residual to find residual patterns. We only require

to transmit pattern indexes of patches additionally, such

that we can obtain the corresponding residual information

on the client side. Our proposed method simultaneously

reduces the cost of transmitting residual information and

boosts video quality and experimentally show superior per-

formance on various coding standards and bitrates.
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